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Abstract
We study the screening properties of the three cubic crystals Si, SrTiO3, and
MgO, considered as prototypes of materials with various degrees of ionic and
covalent bonding. First, we carry out a numerical calculation of the density
induced by a short-range time-independent perturbation, in the framework of the
density functional theory. The short- and medium-range features of screening
are discussed and differences from and similarities with the homogeneous
electron gas are stressed. Secondly, we address the question of how local
fields can be mimicked by simplified models of the microscopic static dielectric
function in which the screening lengths are functions of the unperturbed
ground-state local density. While short-range characteristics are fairly well
reproduced, we show that the oscillatory behaviour of the induced density in
direct space cannot be accounted for by such models. Thirdly, we use the
spectral decomposition of the one-electron static polarization response function
and propose a simple way to take into account the contribution of the high-
energy conduction band states without calculating them explicitly. This method
lightens the numerical burden of the polarization calculation considerably and
may thus open the way to the computation of static response functions of large
systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As screening results from the interaction between electrons and an electric perturbation,
it is a general concept encompassing several phenomena in physics. For example, the
response of electrons to the creation of extended defects such as surfaces, kinks, etc, or
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point defects and even the band structure, the vibrational properties, and the cohesive energy
of solids—constructed from the isolated atoms—may be usefully described in terms of
screening. Moreover, many spectroscopic techniques—such as photoemission and inverse
photoemission—involve addition or subtraction of electrons, i.e. a modification of the electric
field, so the quasi-particle spectra and the optical properties sensitively reflect the screening
properties of the system.

Screening was first studied in simple metals [1]; description of screening in insulators is
more recent, mainly because of the complexity linked to the strong inhomogeneities of the
electronic density. Indeed, the dielectric response in semiconductors and insulators presents
two main features which distinguish it from that in simple metals: the screening of a point
charge is incomplete—even at a long distance—and strongly anisotropic. This means that
the microscopic dielectric matrix in the wavevector space is non-diagonal and the limit of the
macroscopic dielectric function for small wavevectors is finite. The former characteristic, the
so-called local field (LF) effect, deeply influences the screening characteristics [2]. In real
space, they can be described by means of the local electron transfers [3] or, more formally, by
the fact that the static dielectric function ε(r, r′) is a function not only of |r − r′|, as in the
homogeneous electron gas (HEG), but independently of the two vectors r and r′.

The computation of the ab initio dielectric function is a very difficult task even in the
random phase approximation (RPA) [2]. The simulation of optical properties in solids using
dielectric functions that are calculated from first principles [4, 5] is numerically onerous.
A simplified scheme of calculation of the static polarization which avoids the explicit sum
over the empty states [6] is expected to open the way to the study of systems containing
many inequivalent atoms. An alternative approach may be the use of simplified models of
screening which make the computation of the response of the system not much more difficult
than the determination of the ground-state properties [7–9]. Based on the seminal paper by
Penn [10], several model dielectric functions have been built [11,12], which include LF effects
through the use of the local density as the basic variable [13]. Their validity has been checked
for semiconductors such as Si, GaAs, GaN [14], but rarely in ionic compounds [15]. The
study of the electronic response of iono-covalent materials should permit us to have a better
understanding of screening in insulators and to test those approximate models.

The present work aims at achieving some elements of understanding of the following three
aspects of static screening in insulators. Firstly, we calculate the induced density in response
to a localized static perturbation, in real space, by means of a self-consistent ground-state
calculation, in the framework of the density functional theory (DFT). We consider three cubic
crystals, namely Si, SrTiO3, and MgO, which span a wide range of ionicity strengths and
optical dielectric constants. We extract the main physical effects that reflect the characteristics
of screening in semiconductors and insulators. The method of calculation is described in
section 2 and the results are presented and discussed in section 3. They are used in section 4
to test the validity of some model dielectric functions [9, 11], for one of which we suggest a
simple improvement. Thirdly, in section 5 we propose a simplified method for performing the
ab initio computation of the static polarizability, which reproduces satisfactorily the behaviour
of the induced density, at a low computation cost.

2. Method

2.1. Response functions: basic definitions

We consider the response of the electron gas to the application of a weak static electrostatic
perturbation, Vpert, in the framework of the linear response theory. In the following, VH(n)
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and Vxc(n) are the DFT Hartree and exchange–correlation potentials for the density n,
respectively. K

(LDA)
xc is the second functional derivative of the exchange and correlation

energy with respect to the density in the local density approximation (LDA), v is the bare
Coulomb potential, and Ve−i is the interaction between electrons and ions. n(x) and n0 are the
ground-state densities of the solid under consideration with and without a given perturbation
potential Vpert. (x) stands for the level of approximation at which the electron–electron
interaction is taken into account. The induced density n

(x)

ind is defined by n(x) − n0.
The induced potential V (x)

ind is linked to the induced density n(x) and to the response function
R(x) by3:

n
(x)

ind = χ0[V (x)

ind + Vpert]; n
(x)

ind = R(x)Vpert (2.1)

where χ0 is the independent particle polarizability. We can compute [2]:

• the induced density in a system of non-interacting electrons (x = NSC):

V
(NSC)

ind = 0; R(NSC) = χ0; (2.2)

• the induced density in a system in which the electrons interact only through the Hartree
potential during the screening process (x = RPA [16]): the total potential experienced by
the electrons is then Ve−i + VH(n) + Vxc(n0) + Vpert:

V
(RPA)

ind = VH(n) − VH(n0); R(RPA) = [1 − χ0v]−1χ0; (2.3)

• the induced density of the interacting system within the LDA (x=LDA). The total potential
experienced by the electrons is thus Ve−i + VH(n) + Vxc(n) + Vpert. In this case,

V
(LDA)

ind = VH(n) + Vxc(n) − VH(n0) − Vxc(n0);
R(LDA) = [1 − χ0(v + K(LDA)

xc )]−1χ0.
(2.4)

In each case, it is in principle possible to compute the induced density either by calculating
the difference of the ground-state densities with and without the perturbation potential Vpert

or from the knowledge of the ab initio or model response functions. We use these three
approaches, depending on what is convenient in the actual case considered.

2.2. Computational details

We choose a Gaussian-type perturbing potential with the same periodicity as the simulation
cell (RL are the lattice vectors). Apart from a constant, Vpert reads

Vpert(r) = −
∑

L

Ae−γ (r−RL)2
. (2.5)

It is created by a charge density that is globally neutral and is consistent with the implicit
assumption that the total number of electrons in each simulation cell is a constant. Although
qualitatively different from the more realistic Coulomb potential, Vpert is sufficient for studying
the short- and medium-range responses in real space, which is the aim of the present paper. In
the following, we choose A = 0.03 Hartree and γ = 1 au−2. We checked that A is sufficiently
small for the induced density to be a linear function of the potential within 0.5%. With a
positive value for A, Vpert is repulsive for the electrons. The choice of γ is such that the
superposition of potentials between two neighbouring cells is negligible.

The density functional calculations are carried out within the LDA for the exchange and
correlation [17, 18]. The Kohn–Sham orbitals are expanded in a plane-wave basis set up to a
cut-off energy Ecut, and separable soft norm-conserving pseudopotentials [21] are used. For

3 We adopt a matrix notation for the integration over r; n and Vpert are vectors and χ0 is a matrix.
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MgO and SrTiO3, we adopt the same pseudopotentials as in [15]. For silicon, the core radii in
atomic units were chosen as: 1.50 (s), 1.75 (p), 1.75 (d). Ecut needed to obtain a convergence
better than 3% on the induced density is found to be equal to 30 Ryd for Si, 50 Ryd for MgO,
and 60 Ryd for SrTiO3. Except when explicitly mentioned, the simulation cell coincides with
the primitive unit cell of the crystal. We used, for Si, MgO, and SrTiO3, 32, 32, and 64 k-points
to sample the Brillouin zone, respectively.

We compute the induced density n
(x)

ind (x = NSC, RPA, LDA) as follows. n
(LDA)

ind is the
difference of the fully self-consistent DFT-LDA ground-state densities n(LDA) and n0, with
and without the perturbation Vpert, respectively. As far as n

(NSC)

ind is concerned, we compute
the density and the Kohn–Sham potential VKS(n0) for the unperturbed ground state. Then, we
perform a second calculation in which we impose the Kohn–Sham potential to beVKS(n0)+Vpert.
The difference in the ground-state densities [n(NSC) − n0] therefore gives n

(NSC)

ind . This induced
density, which also readsχ0Vpert, is used in the following (see section 5) to evaluate the precision
of our scheme of calculation of the one-electron ab initio polarizability χ0. In order to compute
n

(RPA)

ind , we force the Kohn–Sham potential VKS(n) to be Ve−i + VH(n) + Vxc(n0) + Vpert at each
step of the self-consistent procedure, which yields n = n(RPA). Thus, n

(RPA)

ind is obtained as the
difference n(RPA) − n0. The computed induced potential VH(n

(RPA)

ind ) is used in the following
(see section 4) to estimate the reliability of RPA model dielectric functions. For the sake
of conciseness, such a calculation of the induced densities or potentials is referred to in the
following as a direct method.

For the purpose of estimating the respective qualities of various approaches as far as the
calculation of the static screening of insulators is concerned, the response computed within
the direct method is considered as the natural reference. In order to quantify the quality of a
given approach (y) for calculating a physical observable B(r) such as the induced density or
potential, with respect to the direct method, we define a quality coefficient �B given by

�
(y)

B =
√∫

d3r [B(y)(r) − B(direct)(r)]2∫
d3r [B(y)(r)]2

. (2.6)

The factor �
(y)

B is equal to zero if the methods (y) and (direct) yield the same value of B over
all space.

In the pseudopotential approach, the core electron contribution to screening is missing, and
the electron density does not have the correct node structure close to the nuclei. Nevertheless,
it has been successfully used to compute the electronic response [19] and the phonon spectra
of many systems [20], in spite of the approximations that have just been mentioned. We also
choose to work in such a framework in order to understand the qualitative screening features
of the valence electrons in Si, SrTiO3, and MgO (section 3). Moreover, in sections 4 and 5, we
discuss simplified approaches to the calculation of the induced density and potentials, which
are then compared to the direct method. Actually, the latter calculations are carried out within
the pseudopotential approach, but the validity of those simplified methods, and particularly
their discrepancies with respect to the direct method, is expected not to depend sensitively on
the particular approximation used for calculating the ground-state properties.

3. The induced density in real space

In this section, we report and discuss the spatial dependence of the induced density and potential
computed through the direct method in order to extract the main characteristics of the response.
Indeed, screening in insulators is less well known than in most metals. In particular, its main
features in the HEG, namely the Thomas–Fermi screening length, and the Friedel oscillations,
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Figure 1. From left to the right, n(NSC)
ind , n(LDA)

ind , both in response to a Gaussian potential, and n
(LDA)
ind

induced by a Coulomb potential, in MgO. The perturbation is centred on P, midway between the Mg
and the O ions. The dark and bright areas represent negative and positive induced densities. Positive
iso-density curves are separated by 0.0002 au−3 and negative ones by 0.0005 au−3. Length scales
are in atomic units.

cannot be straightforwardly generalized to heterogeneous solids. Finding well-established
counterparts of such phenomena in insulators is thus a fundamental issue, which is also
relevant to carrying out simplified yet reliable computational schemes for the microscopic
dielectric function. To this end, we emphasize the importance of the LF effect: in a truly
homogeneous system, the induced density is independent of the point on which the perturbation
is centred and isotropic around it, which is not the case in real crystals.

3.1. Range of the perturbation and self-consistent effects

Regarding the specific form of Vpert, we first check that the main characteristics of the induced
density are qualitatively similar when using Coulomb or Gaussian potentials (equation (2.5)).
The latter is more suitable from the computational point of view, being of finite range. Indeed,
we find that the computed induced density for silicon is qualitatively similar to that obtained by
Hybertsen and Louie [22] and Resta and Baldereschi [23] in response to a unique or periodic
point charge potentials, respectively. Moreover, as shown in figure 1 (middle and right panels),
we find the gross features of the induced densities in MgO—that is, the oscillating behaviour
and the spatial extension of nLDA

ind around the perturbation site—are similar for both types of
Vpert.

In the left and middle panels of figure 1, one can also get a first insight into the effect
of self-consistency on the induced density, by comparing n

(NSC)

ind and n
(LDA)

ind . They have been
obtained for the same Gaussian perturbation, centred halfway between the O and the Mg ions.
More precisely, n(NSC)

ind and n
(LDA)

ind are plotted in figure 2 along the Mg–O bond, for two different
locations of Vpert.

n
(NSC)

ind and n
(LDA)

ind mainly differ in the vicinity of the oxygen. According to equations (2.1)
and (2.4), n(LDA) reads

n
(LDA)

ind (r) = 4
∑
i∈VB

∑
j∈CB

〈φj (r0)|Vpert(r0) + V
(LDA)

ind (r0)|φi(r0)〉
εi − εj

φj (r)φ∗
i (r) (3.1)

while n
(NSC)

ind obeys a similar expression with only Vpert(r0) in the matrix element. Since the
induced potential usually counteracts the perturbation, Vpert + V

(LDA)

ind is generally weaker than
Vpert. Such an effect is particularly appreciable in regions where the electron density is high and
the Hartree and exchange–correlation components of V

(LDA)

ind are accordingly large. However,
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Figure 2. Self-consistent (n(LDA)
ind ) and non-self-consistent (n(NSC)

ind ) densities, in au−3, that are
induced in response to a periodic Gaussian potential centred on Mg (on the left) and halfway
between O and Mg (on the right) in MgO. The perturbation centre is marked by an arrow labelled
‘Pert’.

also in this case, the spatial behaviours of n
(NSC)

ind and n
(LDA)

ind are qualitatively similar. In the
remainder of this section, we mainly discuss the characteristics of the self-consistent n

(LDA)

ind
obtained in our calculations.

3.2. On-site response

In order to identify clearly the short- and medium-range contributions, we calculate the
induced density in response to a periodic Gaussian potential by using big enough supercells,
containing 8, 16, and 10 atoms for Si, MgO, and SrTiO3, respectively. The corresponding
Brillouin zones are sampled at 32, 16, and 56 points. Figures 1, 3, and 4 show some
representative plots of the induced density.

The three compounds display some common screening characteristics. Firstly, the induced
density depends on the location of the perturbation as a manifestation of LF effects. Secondly,
due to the repulsion exerted by the perturbation on the electrons, nind(r) in figures 1, 3, and 4
always has the same sign as Vpert close to the perturbation site. The maximum of |nind| is
shifted towards regions of higher total density, whenever the density gradient is large. Thirdly,
around the perturbation centre, the larger the ground-state unperturbed density n0(r), the larger
|nind(r)|.

The expression (3.1) can be used to interpret these results. Indeed, the induced
density close to the centre of the perturbation r0 is weighted by the matrix element
〈φj (r0)|Vpert(r0)|φi(r0)〉, which is large when the valence band (VB) state i and the conduction
band (CB) state j show some degree of localization around the perturbation. As a consequence,
nind(r0) is stronger in absolute value when Vpert is located close to a region of high density,
which is especially the case for oxygen. This qualitatively explains why the model dielectric
functions that mimic the LF effects through a functional dependency on n0(r) can give a
reasonable description of the induced potential close to the perturbation site. Nevertheless,
the perturbation centre does not necessarily coincide with the location of the maximum of
|nind(r)|, which is displaced towards the region(s) of high electron density.

3.3. Medium-range effects

Apart from the characteristic of the on-site response, one can see in figures 1, 3, and 4, that
nind(r) oscillates in the vicinity of the O atoms. A similar effect, although smaller in magnitude,
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Figure 3. An iso-density map of the induced density n
(LDA)
ind in silicon, in response to a Gaussian

perturbation localized between two silicons (on the left) and on an interstitial site (on the right).
The perturbation is centred on P. The dark and bright areas represent negative and positive induced
densities. The iso-density curves are separated by 0.0005 au−3 for the negative value and by
0.000 05 au−3 for the positive ones on the left. On the right, they are separated by 0.000 04 au−3

for the negative value and by 0.000 01 au−3 for the positive ones. Length scales are in au.

Figure 4. An iso-density map of the induced density n
(LDA)
ind in response to a Gaussian perturbation

centred on an interstitial site in MgO (left plot) and halfway between Sr and Ti in SrTiO3 (right
plot). The perturbation is centred on P. The dark and bright areas represent negative and positive
induced densities. The iso-density curves are separated by 0.0001 au−3. Length scales are in au.



4706 B Amadon et al

may be seen close to the Sr and Ti atoms. In silicon, they are also present (figure 3) but their
amplitude is much weaker: the maximum of the positive part of nind(r) is an order of magnitude
smaller than the absolute value of its negative counterpart, while in MgO and SrTiO3 the two
extrema have nearly equal intensities. These effects also exist in response to a point charge
neutralized by a uniform background (figure 1, right panel) and have also been observed by
Hybertsen and Louie [22]. They are thus a genuine physical characteristic of the screening in
insulators, independently of the actual shape of Vpert.

The shape of the oscillations recalls that of atomic orbitals. Indeed, the oscillations of
nind(r) result from the phase difference between the VB and the CB wavefunctions that appear
as a product in equation (3.1). Around the Fermi level, and especially in a very ionic compound
such as MgO, the VB states are anion-like and the CB ones are cation-like, and give a large
contribution to nind(r) because the energy difference (εi − εj ) in the denominator is small.
In the HEG, in contrast, the PW eigenstates are completely delocalized and contribute to the
sum in equation (3.1) giving rise to characteristic oscillations in nind(r) known as Friedel
oscillations. Silicon is a somewhat intermediate case between the latter two systems. We do
not discuss long-range effects, whose study is beyond the capability of our calculations, as
already pointed out.

4. Model dielectric functions

In this section, we analyse the validity of some simplified models of microscopic dielectric
functions built to describe the screening in semiconductors and insulators. In such materials,
whereas the finite value of the optical dielectric constant ε∞ can easily be taken into account, it
remains a challenge to describe accurately the existence of LF effects. To our knowledge,
two RPA models attempt to include LF effects, namely the Levine–Louie (LL) [11] and
the Cappellini–Del Sole–Reining–Bechstedt (CDRB) [12] models, which are detailed in the
following. As a first step, we compare the induced potential V M

ind given by model M (M =
LL or CDRB) with that obtained by the RPA direct method in DFT-LDA. Then, we propose
an improved version of the CDRB model that is based on the same treatment of LF effects.
Furthermore, we interpret the results and analyse the limits of such models.

4.1. Theoretical background

The independent electron polarizability χ0 is related to the RPA dielectric function through
the relation

ε(RPA)(r, r′) = δ(r − r′) −
∫

dr′′ v(r − r′′)χ0(r
′′, r′). (4.1)

The screened interaction W(r, r′) can be derived from the knowledge of ε(RPA)(r, r′):

W(r, r′) =
∫

dr′′ v(r − r′′)ε−1
(RPA)(r

′′, r′). (4.2)

Thus, given a (necessarily approximated) expression for ε−1
(RPA), one can in principle calculate

all response functions. We focus on two RPA models for the inverse dielectric function of
insulators: the CDRB model [12] and that given by LL [11]. In these models, ε−1

(RPA)(r, r′)
is taken as a function of |r − r′| only. LF effects are nevertheless reintroduced by means of
a local ansatz: in the reciprocal space, the inverse dielectric function is written as a function
of the wavevector modulus q = |q| and the local density n(r). W(r, r′) can then be written,
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following the ansatz of Hybertsen and Louie [13], as

W(r, r′) = 1

2(2π)3

[∫
v(q)ε−1

(RPA)(|q|, n(r))eiq·(r−r′) dq

+
∫

v(q)ε−1
(RPA)(|q|, n(r′))eiq·(r−r′) dq

]
. (4.3)

The inverse macroscopic dielectric function ε̃−1
(RPA)(q) is thus equal to

ε̃−1
(RPA)(q) = 1

�

∫
�

dr ε−1
(RPA)(q, n(r)), (4.4)

(where � is the volume of the unit cell) and its limit at small values of q is the inverse of the
optical dielectric constant ε∞. In the opposite limit q → ∞, any RPA dielectric function must
behave as the Lindhardt dielectric function [12]. These requirements give two constraints that
every model for the microscopic dielectric functions must fulfil: one can show for example,
by computing the response to a periodic Coulomb potential with a neutralizing background of
charge, that it is necessary that ε−1(q, n(r)) → 1/ε∞ in the limit q → 0, whatever r, in order
that no divergence of the total potential occurs. The CDRB dielectric function is defined as

εCDRB(q, n(r)) = 1 +
1

A[n(r)] + B[n(r)]q2 + C[n(r)]q4
, (4.5)

with A[n(r)] = 1/(ε∞ −1), B[n(r)] = 1/q2
TF[n(r)], and C[n(r)] = 3/(4q2

TF[n(r)]k2
F[n(r)]).

The LL model has a more complex expression:

εLL(q, n(r)) = 1 +
1

kFπ

[
1

Q2
− λ

2Q2

[
arctan

2Q + Q2

λ
+ arctan

2Q − Q2

λ

]

+

[
λ2

8Q5
+

1

2Q3
− 1

8Q

]
ln

(
λ2 + (2Q + Q2)2

λ2 + (2Q − Q2)2

)]
. (4.6)

In those expressions, Q = q/kF[n(r)] and λ = 16πn(r)/(k4
F[n(r)](ε∞−1)). LF effects

are introduced through the dependence of the Fermi wavevector kF, the Thomas–Fermi
wavevector qTF, and λ on the local density4.

The two models fulfil the requirements for the dielectric function at small and large
wavevectors. They contain two parameters: the optical dielectric constant and the local
electron ground-state density. For the semiconductors and insulators under study, we adopt
the experimental value of the optical dielectric constant ε∞ [24] and the local density is taken
from the DFT-LDA calculation of the unperturbed ground state (n(r) = n0(r)).

4.2. Testing and improvement of the RPA models

Within the RPA, we compare the potentials induced by the Gaussian perturbation
(equation (2.5)) that are computed within the direct method or by using the CDRB
(equation (4.5)) and the LL (equation (4.6)) model dielectric functions. We quantify the
quality of those models by means of the coefficients �

(LL)
V and �

(CDRB)
V (equation (2.6)). The

perturbation is chosen at various sites r0, in order to obtain a clear picture of LF effects. Either
it is centred on the atom A (and accordingly labelled in tables 1 and 3) or it is located along
the line connecting atoms A and B and labelled ‘x A–B’.

The LL model appears to be slightly superior to the CDRB one for Si, while their overall
precisions are nearly identical for SrTiO3 and MgO. Figure 5 shows in detail the behaviour of
V

(CDRB)

ind along the Mg–O bond in magnesium oxide, when the perturbation is located midway

4 kF[n(r)] = (3π2)2/3n(r)2/3 and qTF[n(r)] = (4kF(n(r))/πa0)
1/2, where a0 is the Bohr radius.
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V
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H
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tr
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)

direct
model (α=1,ε=2.95)
model (α=0,ε=2.95)
model (α=1,ε=3.3)

O
Pert Mg

Figure 5. The induced potential V RPA
ind computed within the RPA in response to a Gaussian potential

localized between O and Mg in MgO. The potential computed via the direct method (direct) is
compared to those obtained through the use of the CDRB model dielectric function (equation (4.5))
by adopting different values for α and ε∞ (see the text). The positions of the perturbation (Pert)
and of the Mg and O atoms are shown by an arrow.

Table 1. Values of �
(LL)
V and �

(CDRB)
V in Si for different perturbation sites r0. The second line

gives the ground-state density at the point where the perturbation is centred. The site −1 Si–Si is
interstitial.

r0 0.5 Si–Si −1 Si–Si 0.25 Si–Si

n(r0) (au−3) 0.086 0.0033 0.065

�
(CDRB)
V 0.26 0.38 0.36

�
(LL)
V 0.16 0.23 0.24

Table 2. Values of �
(LL)
V and �

(CDRB)
V in MgO for different perturbation sites. The notation is the

same as in table 1.

r0 0.25 O–Mg 0.5 O–Mg Mg O

n(r0) (au−3) 0.44 0.05 0.014 0.25

�
(CDRB)
V 0.40 0.24 0.34 0.50

�
(LL)
V 0.42 0.15 0.40 0.52

between O and Mg. The largest failure is happening close to the perturbation site, where the
model underestimates the response. In addition, the oscillations of nind(r0) in the vicinity of
the nuclei (O, Sr, and Ti) are not reproduced.

In order to improve such models while keeping the same simplified treatment of LF
effects, we consider the class of microscopic dielectric functions of the form ε(q, n(r)) given
in equation (4.5). The CDRB model corresponds to the particular choice A = 1/(ε∞ − 1),
B[n(r)] = 1/q2

TF[n(r)], and C[n(r)] = 3/(4q2
TF[n(r)]k2

F[n(r)]).
Firstly, there is no constraint about the actual form of B[n(r)]. Cappellini et al [12]

argued that it can be determined from a fit of the macroscopic dielectric function that can be
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Table 3. Values of �
(LL)
V and �

(CDRB)
V in SrTiO3 for different perturbation sites.

r0 Ti Sr O 0.5 O–Ti 0.5 Sr–Ti 0.25 O–Ti 0.75 O–Ti

n(r0) (au−3) 0.24 0.12 0.29 0.11 0.013 0.52 0.94

�
(CDRB)
V 0.25 0.17 0.44 0.22 0.24 0.28 0.26

�
(LL)
V 0.30 0.10 0.47 0.20 0.15 0.30 0.29

Table 4. Values of �
(α)

V RPA in MgO, obtained for different sites r0, though the two screening models
given in equation (4.5), by using different values for the B-coefficient (see the text).

r0 0.25 O–Mg 0.5 O–Mg Mg O

n(r0) (au−3) 0.44 0.05 0.014 0.25

�
(α=1)
V 0.40 0.24 0.34 0.5

�
(α=0)
V 0.23 0.14 0.48 0.3

Table 5. Values of �
(α)

V RPA in SrTiO3, obtained for different sites r0, through the two screening
models given in equation (4.5), by using different values for the B-coefficient (see the text).

r0 0.5 O–Ti 0.5 Sr–Ti 0.25 O–Ti 0.75 O–Ti Ti O

n(r0) (au−3) 0.11 0.013 0.52 0.94 0.24 0.29

�
(α=1)
V 0.22 0.24 0.28 0.26 0.25 0.44

�
(α=0)
V 0.41 0.20 0.19 0.14 0.125 0.25

obtained from first principles, but only the microscopic ε is of interest here, and the relation
between the latter two (equation (4.4)) cannot be straightforwardly inverted in inhomogeneous
systems. Therefore, we adopt the functional form B[n(r)] = α/q2

TF[n(r)] and allow α to vary
(in practice, variations in the range −1 � α � 2 are sufficient for our purposes). Considering
several sites for the perturbation, we compute the coefficient �(α)

V , which quantifies the success
of the model at reproducing the induced potential as a function of the α-parameter. The results
are compared in tables 4 and 5.

Secondly, the choice of a particular value for ε∞ should in principle rely on an independent
RPA calculation. For practical reasons, we adopt here the experimental ε∞ [24], since the
RPA is expected to yield a value pretty close to the experimental one [2]. In order to check
the sensitivity of the computed induced potential to the actual ε∞, we evaluate Vind in MgO
by using the model 4.5 with α = 0 and ε∞ = 3.3, which represents a limiting case, since
ε∞ = 3.03 in the LDA as computed by Shirley [25]. The quality coefficients �V that are listed
in the tables change by a few per cent, and the induced potentials that are computed by using
ε∞ = 3.3 or 2.95 hardly differ (see figure 5 for an example).

In MgO and SrTiO3, the minimum of �
(α)
V is found for α ∈ [−0.5, 0.5], whatever the

perturbation site, and the value α = 0 is a good compromise for reproducing the overall features
of the induced potential. In addition, as shown in table 4, a smaller value of �

(α=0)
V results

for most of the perturbation sites. As an illustration, we plot in figure 5 the induced potential
for α = 0, which is clearly improved with respect to the α = 1 case, in full accordance with
table 4. For silicon, the minimum is shallower and an optimized value α = 1 is deduced.

By adopting ε(q, n(r)) (equation (4.5)), the macroscopic dielectric function ε̃(q) can be
estimated from equation (4.4). Interestingly, in the case of MgO and SrTiO3, we find the
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macroscopic dielectric function to be well fitted by a function of the type 4.5 with α = 1 and
the average density replacing n(r), in agreement with what was found by Cappellini et al for
silicon [12]. Therefore, if one aims to mimic simply the macroscopic static dielectric function
without worrying too much about the induced potential, the CDRB model (α = 1) with the
mean density provides a good fit.

4.3. Discussion

Both CDRB and LL models describe the on-site response in different crystals fairly well for
various perturbation sites. In contrast, the rather large values of the quality factors �

(LL)
V and

�
(CDRB)
V , especially for ionic materials such as MgO and SrTiO3 where some errors may be

upwards of 50% (see tables 1–5), mainly come from the failure of the CDRB and the LL
models to reproduce the medium-range oscillations of the induced density. Indeed, the latter
ones originate mainly from the phases of the eigenstates at the VB maximum and CB minimum,
which are completely discarded in any formulation of LF effects that is based upon the local
density.

In general, the CDRB model (modified or not) can describe with a good accuracy the short-
range induced potential created by a localized perturbation. However, for some positions of
the perturbation (at the Mg site in MgO, midway between the O and the Ti in SrTiO3), the
results are not satisfactory even when one allows α to vary (see table 4). As was said before,
the actual value of ε∞ has a marginal influence and the use of an optical dielectric constant
that is computed within the RPA for each material, although possible in practice and logically
more consistent, cannot in any case improve the quality of the induced potentials that are
obtained from the model dielectric functions. At those sites, the oscillations of the induced
potential are as intense as the potential depletion near the perturbation site (partly because the
local density on the perturbation site is very weak), and the weakness of local-density-based
models is thus particularly evident. In the next section, we come back to the representation
of the non-interacting polarizability χ0 in terms of the Kohn–Sham wavefunctions, which
seems to be unavoidable whenever the medium-range oscillations of the induced density have
to be reproduced, and we propose a practical way to lighten the computational burden of its
numerical calculation.

5. Ab initio calculation of the polarizability

5.1. Method

We restrict ourselves to the calculation of the non-interacting static polarizability χ0 because
it is a key quantity from which one can calculate the inverse dielectric function in the RPA or
beyond (including the kernel Kxc in the LDA), i.e. all the screening properties of the system
(see section 2). For diamagnetic systems, χ0 can be written as

χ0(r, r′) = 4
∑
i.j

fi(1 − fj )

εj − εi

[φ∗
i (r)φj (r)φ∗

j (r
′)φi(r

′)] (5.1)

where φi , εi , and fi are the Kohn–Sham wavefunctions, eigenvalues, and occupation factors,
respectively. At zero temperature, the summation runs over the occupied (i) and the empty
states (j ). We note that χ0(r, r′) is invariant with respect to the exchange of r and r′. Once χ0

is known, the density n
(NSC)

ind induced by any Vpert can be computed through the relations (2.2)
and (2.4).

It can be easily realized that the contribution of each single state (either i or j ) to χ0 in
equation (5.1) roughly decreases inversely to its energy distance from the Fermi level and is
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Figure 6. The schematic energy diagram. WLCB and WVB are the bandwidths for the lower
conduction band (LCB) and the VB. LCB refers to the band of conduction states computed in the
DFT-LDA. � is the minimum gap as given by a DFT-LDA calculation.

modulated by the i–j overlap. The sum over CB states converges slowly and, as recognized
in [2], it is necessary to include a large number of CB states to compute χ0 accurately.
Nevertheless, as shown by Steinbeck et al [6], beyond a given energy, the CB states can
be replaced by plane waves (PWs) in equation (5.1). The PW contribution to equation (5.1)
can be analytically evaluated, thus lightening the computational burden. This approximation
yields much better results for Si than for more ionic semiconductors such as GaN. Moreover,
the same authors have shown that the results are not sensitive to the use of symmetrized PWs,
which is in principle required. In the same spirit as [6], we compute χ0 from equation (5.1) by
including Ne Kohn–Sham states in the j -summation over CB, up to an energy that lies WLCB

above the CB minimum (figure 6). The remaining states, up to the cut-off energy Ecut, are
taken as PWs. The energy of a (k + G) PW is written as Einf + |G + k|2/2, where Einf is the
extrapolated bottom of the PW band that can be determined by the requirement of conservation
of the number of states:∫ Ecut

Einf

nPW(E) dE = Ne

�
(5.2)

(where nPW(E) is the PW density of states and � the volume of the unit cell). According to
equation (5.2), the lowest-energy PW introduced in the sum (5.1) is the Ne + 1th CB state on
the energy scale. In the following, we call the PW and Kohn–Sham CB state contributions to
the polarizability χPW and χLCB, respectively. The simple assumption χ0 = χLCB + χPW gives
contrasting results for ionic compounds [6]. For this reason, we use the following ansatz:

χβ(r, r′) = χLCB(r, r′) + e−β[n(r)+n(r′)]χPW(r, r′). (5.3)

The weighting factor e−β[n(r)+n(r′)] modulates the PW contribution in direct space, while
preserving the symmetry of χ0(r, r′) with respect to interchange of r and r′. Its use can
be qualitatively justified as follows. Unlike PWs, the Kohn–Sham CB state density is not
uniform in space. In particular, taking into account the closure relation and the fact that the
ground-state density n0(r) is built from VB states, one can easily realize that CB states are
preferentially located away from the nuclei, in regions in which n0(r) is rather low. Thus,
replacing high-energy CB states with PWs in equation (5.1) leads to an error in those regions
that we partially correct by introducing the energy-independent weighting factor e−β[n(r)+n(r′)].
As shown in the following section, such an approximation clearly improves the quality of the
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Figure 7. max �(χLCB) (filled symbols) and max �(χβ ) (empty symbols) as a function of
WLCB/(WVB/2 + �) in the cases of Si, MgO, and SrTiO3.

computed χ0 for both covalent and ionic crystals, provided that the β-factor is chosen in a
reasonable range.

One can easily see that the larger the number Ne of CB states explicitly included in
the sum (5.1), the better the approximation (5.3). It is also to be noted that a remarkable
computational speed-up may in principle be achieved by replacing the sum on high-energy CB
states with the weighted PW contribution, since χPW in equation (5.3) can be rewritten in an
analytical form well suited to a fast calculation.

In order to analyse the performances of this computational scheme for χ0 in materials
with various degrees of ionic and covalent bonding, we introduce the coefficient 
 =
WLCB/(� + WVB/2). It is the ratio of the lower CB width WLCB (see caption of figure 6)
to the difference between the CB minimum and the centre of the VB (� + WVB/2). 
 is a
universal quantity which takes into account the number of CB states included in equation (5.1)
normalized with respect to the main features of the electronic structure such as the valence
bandwidth and the fundamental gap. In the limit of very large value of 
, the exact result
for χ0 is recovered. For 
 close to one, we find that approximation (5.3) is superior to other
computational schemes used previously.

5.2. Results and discussion

In a first step, for the three materials Si, MgO, and SrTiO3, we keep in the summation 3.1
only the CB states obtained in the LDA (i.e. no PWs at all) thus obtaining χLCB. Then, by
placing the Gaussian perturbation Vpert at various sites, we compute the induced density as
χLCB[V (LDA)

ind + Vpert] and compare it to that extracted by the direct method through the quality
coefficients �

(χLCB)
n . In silicon we choose the sites 0.5 Si–Si, 0.25 Si–Si, and −1 Si–Si; in

MgO the sites Mg, O, 0.5 O–Mg, and 0.25 O–Mg; in SrTiO3 the sites 0.25 O–Ti, 0.5 O–Ti,
0.75 O–Ti, and 0.5 Sr–Ti.

In figure 7, the maximal values of �
(χLCB)
n among all sites are plotted as a function of 
.

As expected, max � decreases as 
 gets larger, i.e. when more Kohn–Sham CB states are
included. It is worth noting that the points corresponding to the different crystals fall on the
same curve. Its universality shows that 
 is the relevant parameter for characterizing the
convergence of the ab initio calculation of χ0, whatever the VB–CB gap width and the specific
electronic density of states.

In a second step, we repeat the same procedure, but we complement the summation with
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Figure 8. The induced density nind (in au−3) for a Gaussian repulsive perturbation centred halfway
between Sr and Ti (labelled ‘Pert’). ndirect

ind is compared to induced densities computed by means
of χLCB and χβ , with Ne = 40.

weighted PWs (equation (5.3)). We thus obtain χβ , the quality of which is estimated through

�
(χβ)
n . Then, similarly to the case for χLCB, we define max �

(χβ)
n as the maximum of �

(χβ)
n

among all perturbation sites, for Si, MgO, and SrTiO3 and different 
. max �(χβ) obviously
depends on the weighting parameter β. Therefore, we determine the optimal weighting
parameter which minimizes max �β for all materials and in the whole range of 
. This yields
the value β � 1 au3. It must be noted that the optimal weighting is rather independent of the
actual location of the perturbation and the precise value of 
—related to the number of CB
states included—varying at most by �3% around β = 1. This suggests that the weighting
procedure (equation (5.3)) captures the essential features of the contribution of high-energy
CB states to the polarizability, for crystals over a wide range of iono-covalent bonding. From
a practical point of view, the introduction of the PW weighting leads to an improvement on
max � by a factor 2 (in the cases of MgO and SrTiO3) or even 3 (for silicon). In agreement
with what was obtained by Steinbeck et al for GaN [6], we find that the inclusion of PWs
with no weighting (i.e. β = 0 in equation (5.3)) does not improve � in the cases of MgO and
SrTiO3.

To show how the weighting procedure (equation (5.3)) works, we compare in figure 8
the induced densities computed by the direct method, from χLCB and from χβ plotted along
a Sr–Ti bond in SrTiO3 when a perturbing Gaussian potential is located halfway between the
atoms. We see that the induced density close to the Ti atom is well accounted for through the
use of χLCB. However, the response is underestimated in the low-density region close to the
perturbation. The inclusion of weighted PWs clearly improves nind in the interstitial region,
where the contribution of the lower CB states is very weak and the absolute induced density
accordingly underestimated, without affecting it much elsewhere.

Since the optimum value of the weighting parameter β and the curves in figure 7 are rather
insensitive to the crystal under study, a systematic procedure for optimizing the computational
set-up of the non-interacting polarizability χ0 can be established. Given a required precision
max � on nind(r), the full curve in figure 7 yields WLCB/(� + WVB/2) from which, knowing
the electronic structure of the compound (i.e. the VB width WVB and the fundamental gap �),
the number Ne of CB states to be explicitly calculated can be extracted. PWs are then added
up to the cut-off energy Ecut with the optimal weighting factor e−[n(r)+n(r′)].

We end with a last remark regarding the computational speed-up that can be obtained by
using weighted PWs in the calculation of the static polarizability (equation (5.3)), at a given
level of precision as indicated by max � in figure 7. If one needs to reach a precision of, let
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us say, about 30% on the induced density in SrTiO3, the conduction bandwidth WLCB to be
considered is about a half of that needed without adding PWs to obtain the same precision.
The resulting speed-up turns out to be by a factor bigger than 3, since the computation of the
PW contribution χPW to the polarizability is in practice very inexpensive with respect to that
of χLCB. For larger-size systems, for which the computation of CB states is expensive, the
speed-up that can be obtained by using equation (5.3) may rise up to a factor ten.

6. Conclusions

In this paper, we have discussed some fundamental and practical issues concerning screening
properties in semiconductors and insulators. We have chosen the three cubic crystals Si,
SrTiO3, and MgO, whose bonding spans a wide range of ionicity strengths and optical dielectric
constants.

We have carried out a direct-space numerical calculation of the density induced by a
localized, time-independent repulsive perturbation, in the framework of the DFT. The short-
and medium-range features of the screening have been discussed, which include a depletion
of electrons close to the perturbation and density oscillations with atomic-like features in the
vicinity of the nuclei.

We have addressed the question of how LFs can be mimicked by simplified models of
the microscopic static dielectric function that use the unperturbed ground-state local density
as the basic variable. We have shown that the short-range screening can be qualitatively well
reproduced, and we suggest a simple improvement for their description within the same class
of models. On the other hand, we have found that the oscillatory behaviour of the induced
density in the real space cannot be accounted for.

Finally, we propose a simplified method for performing the ab initio computation of
the one-electron static polarizability, in which the contribution of high-energy CB states is
replaced by a weighted sum over PWs. Such a method lightens the numerical calculational
burden considerably and may thus open the way to the computation of static response functions
of large systems.
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